Molecular Geometry. IV. Structure of 3,4,10,11,-Dibenzo-1,8-diazacyclotetradeca-1,3,8,10tetraene, a Compound Containing a 14-Membered Ring

By S. K. Arora and John P. Schaefer
Department of Chemistry, University of Arizona, Tucson, Arizona 85721, U.S.A.

(Received 13 December 1972; accepted 26 June 1974)

Abstract

The structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2}$, has been determined for the purpose of elucidating the conformation of a large ring. 1098 three-dimensional intensities were measured on a Picker PDP 8/I diffractometer and the structure was refined to an R value of $0 \cdot 65$. The space group is $P 2_{1} / c$ with $Z=2$ and $a=5 \cdot 02, b=9 \cdot 60, c=16 \cdot 35 \AA, \beta=96 \cdot 5^{\circ}$. The structure was solved by the symbolic addition method. In the 14 -membered ring there are two trans-substituted double bonds. The $\mathrm{C}=\mathrm{N}$ bond length is $1.257 \AA$.

Goldman, Larson, Tretter \& Andrews (1969) have recently shown that on standing 3,4-dihydro-5 H -2benzazepine (I) dimerizes to $3,4,10,11$-dibenzo-1,8-di-azacyclotetradeca-1,3,8,10-tetratene (II); the dimerization reaction is acid catalyzed and reversible. From

mechanistic considerations a trans, trans 'chair'structure (III) for (II) that placed the carbon-nitrogen double bonds in close proximity to facilitate formation of the assumed 1,3-diazetidine intermediate (IV) was postulated. A study of the crystal structure of (II) was initiated for the purpose of investigating the conformation of the 14 -membered ring, since information pertaining to the structural aspects of large rings is scarce.

(III)

(IV)

Experimental

Crystals of (II) were grown from hexane and a needle with dimensions $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$ was selected for recording crystal and intensity data. Preliminary oscillation and Weissenberg photographs showed that the crystals are monoclinic and that (II) crystallizes in the space group $P 2_{1} / c[a=5 \cdot 024(8), \quad b=9 \cdot 598(2), \quad c=$
$16.352(4) \AA, \beta=96.61^{\circ}(2), \varrho_{c}=1.218 \mathrm{~g} \mathrm{~cm}^{-3}, \varrho_{\text {obs }}=$ $1.225 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$].
The cell parameters were determined by least-squares fit to the settings for the four angles of eight reflections on a Picker FACS-I diffractometer ($\mathrm{Cu} K \alpha, \quad \lambda=$ $1.54178 \AA$). The crystal was mounted along the a axis. Data were collected with a Picker FACS-I system with monochromatic radiation and a $\theta-2 \theta$ scan technique. When the count rate exceeded 10000 c.p.s., attenuators were inserted. The diffracted intensities were measured with a scintillation counter equipped with a pulse-height analyzer. The scan rate was $2.0^{\circ} \mathrm{min}^{-1}$ with 10 s background measured at the two extremes of each scan. The scan range had a base width of $2 \cdot 2^{\circ}$, with a dispersion factor allowing for $\alpha_{1}-\alpha_{2}$ splitting being applied at large 2θ values. One independent set of data was measured, which consisted of 1415 reflections of which 1098 were considered to be observed using the criterion that a reflection be greater than three times its standard deviation. One standard reflection was monitored every 100 measurements to check the crystal alignment and stability; no decrease in the intensity of the standard was observed. Lorentz and polarization corrections were applied to the data but no correction was made for absorption.

Structure determination and refinement

Normalized structure factors (E values) were calculated and the symbolic addition procedure for centrosymmetric crystals was used to obtain phases for 165 reflections with $E>1.5$. An E map clearly revealed the benzene ring and a difference map located the remaining five atoms in the asymmetric unit. The initial R index ($\left.R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|\right)$ of 0.446 was reduced to 0.148 after four cycles of isotropic least-squares refinement. Two cycles of anisotropic refinement reduced the residual to $0 \cdot 117$. A difference map revealed the positions of all 11 hydrogen atoms and further refinement of coordinates using isotropic thermal parameters for hydrogens (these were set equal to the

Table 1. Final positional and thermal parameters of dibenzodiazacyclotetradecatetraene (estimated standard deviations in parentheses)

The temperature factor $\left(\times 10^{4}\right)$ for non-hydrogen atoms is of the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+\beta_{23} k l\right)\right]$. The hydrogen atoms were given isotropic temperature factors of the atoms to which they are attached.

	x / a	y / b	z/c	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	-0.1502 (4)	0.0934 (3)	$0 \cdot 3005$ (1)	312 (10)	120 (3)	34 (1)	-32 (4)	8 (2)	-9 (1)
C(2)	$0 \cdot 0639$ (4)	$0 \cdot 1142$ (3)	$0 \cdot 3607$ (1)	282 (10)	108 (3)	38 (1)	3 (4)	9 (2)	0 (1)
C(3)	$0 \cdot 1239$ (4)	$0 \cdot 2448$ (2)	$0 \cdot 3947$ (1)	162 (9)	109 (3)	-28(1)	- 11 (3)	10 (2)	2 (1)
C(4)	-0.0392 (4)	0.3585 (2)	$0 \cdot 3665$ (1)	174 (9)	108 (3)	27 (1)	-19 (3)	10 (2)	5 (1)
C(5)	-0.2527 (4)	$0 \cdot 3353$ (2)	$0 \cdot 3050$ (1)	245 (10)	122 (3)	29 (1)	-9 (4)	-7 (2)	6 (1)
C(6)	-0.3075 (5)	$0 \cdot 2059$ (3)	$0 \cdot 2730$ (1)	291 (10)	144 (3)	26 (1)	-39 (4)	-12 (2)	-3(1)
C(7)	0.0116 (4)	$0 \cdot 5016$ (2)	$0 \cdot 3974$ (1)	179 (9)	108 (3)	28 (1)	-13(3)	-1 (2)	5 (1)
N	-0.1627 (3)	0.5961 (2)	$0 \cdot 3894$ (1)	227 (8)	108 (2)	32 (1)	0 (3)	-6 (2)	1 (2)
$\mathrm{C}(9)$	-0.0829 (4)	$0 \cdot 7360$ (2)	$0 \cdot 4158$ (1)	204 (9)	109 (3)	34 (1)	-8(3)	4 (2)	4 (1)
$\mathrm{C}(10)$	0.3566 (4)	0.2551 (2)	$0 \cdot 4619$ (1)	124 (9)	113 (3)	39 (1)	1 (3)	-1 (2)	1 (1)
C(11)	$0 \cdot 2991$ (4)	$0 \cdot 1894$ (2)	$0 \cdot 5428$ (1)	214 (9)	107 (3)	34 (1)	12 (4)	-12(2)	2 (1)

Table 1 (cont.)

	x	y	z
H(1)	$-0.1880(48)$	$-0.0102(25)$	$0.2762(15)$
H(2)	$0.1898(47)$	$0.0376(24)$	$0.3819(14)$
H(5)	$-0.3700(42)$	$0.4171(22)$	$0.280(13)$
H(6)	$-0.4489(43)$	$0.1921(20)$	$0.2319(13)$
H(7)	$0.2028(46)$	$0.5334(22)$	$0.4243(14)$
H1(C9)	$-0.0622(46)$	$0.7845(22)$	$0.3626(14)$
H2(C)	$0.0627(46)$	$0.7329(19)$	$0.463(14)$
H1C10)	$0.5038(45)$	$0.2011(22)$	$0.4380(13)$
H2(C10)	$0.4049(44)$	$0.3494(23)$	$0.4757(13)$
H1(C11)	$0.2670(41)$	$0.0872(25)$	$0.5316(13)$
H2(C11)	$0.4567(46)$	$0.1931(21)$	$0.5826(13)$

isotropic thermal parameters of the atoms to which they were attached) reduced the residual to 0.065 . Refinement was terminated at this stage since the ratio of shifts to standard deviations was less than 0.3 for all parameters. The weighting scheme that was employed in the least-squares refinement was $V w=1 / \sigma(F)$ where $\sigma(F)=0.5 \sigma\left(F^{2}\right) / F$. The scattering factors used throughout the work were those of Hanson, Herman, Lea \& Skillman (1964). No correction was made for extinction.

Results and discussion

Table I summarizes positional and thermal parameters for the molecule and Tables 2 and 3 summarize bond distances and angles. Observed and calculated structure

Table 2. Bond lengths (\AA) in the molecule (estimated standard deviations in parentheses

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.387(3)$	$\mathrm{C}(1)-\mathrm{H}(1)$	$1.07(3)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.390(3)$	$\mathrm{C}(2)-\mathrm{H}(2)$	$0.99(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.409(3)$	$\mathrm{C}(5)-\mathrm{H}(5)$	$1.00(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.401(3)$	$\mathrm{C}(6)-\mathrm{H}(6)$	$0.94(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.365(3)$	$\mathrm{C}(7)-\mathrm{H}(7)$	$1.05(2)$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.382(3)$	$\mathrm{C}(9)-\mathrm{H} 1(\mathrm{C} 9)$	$1.00(2)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.476(3)$	$\mathrm{C}(9)-\mathrm{H} 2(\mathrm{C} 9)$	$0.97(2)$
$\mathrm{C}(3)-\mathrm{C}(10)$	$1.512(3)$	$\mathrm{C}(10)-\mathrm{H} 1(\mathrm{C} 10)$	$1.02(2)$
$\mathrm{C}(7)-\mathrm{N}$	$1.257(3)$	$\mathrm{C}(0)-\mathrm{H} 2(\mathrm{C} 10)$	$0.96(2)$
$\mathrm{N}-\mathrm{C}(9)$	$1.453(3)$	$\mathrm{C}(11)-\mathrm{H} 1(\mathrm{C} 11)$	$1.01(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.522(3)$	$\mathrm{C}(11)-\mathrm{H} 2(\mathrm{C} 11)$	$0.97(2)$
$\mathrm{C}(11)-\mathrm{C}(9)^{\prime}$	$1.524(3)$		

Table 3. Bond angles $\left({ }^{\circ}\right)$ in the molecule (estimated standard deviations in parentheses)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.9 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.4 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.7 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.6 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$120 \cdot 2$ (2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	119.1 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(10)$	117.6 (2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(10)$	124.0 (2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	118.4 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	122.5 (2)
$\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{C}(11)$	113.4 (2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(9)^{\prime}$	113.0 (2)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{N}$	$123 \cdot 0$ (2)
$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(9)$	118.0 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	116.7 (1.0)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	$124 \cdot 1$ (1.0)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$123 \cdot 1$ (1.1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	115.0 (1.0)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	$118 \cdot 1$ (0.9)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	$120 \cdot 2$ (0.9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.7 (1.0)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	$119 \cdot 1$ (1.0)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{H}(7)$	121.7 (1.0)
$\mathrm{N}-\mathrm{C}(7)-\mathrm{H}(7)$	$115 \cdot 1$ (0.9)
$\mathrm{N}-\mathrm{C}(9)-\mathrm{Hl}(\mathrm{C} 9)$	$103 \cdot 2$ (1.0)
$\mathrm{N}-\ldots \mathrm{C}(9)-\mathrm{H} 2(\mathrm{C} 9)$	$110 \cdot 8$ (1.0)
$\mathrm{C}(11)^{\prime}-\mathrm{C}(9)-\mathrm{H} 1(\mathrm{C} 9)$	108.4 (1.0)
$\mathrm{C}(11)^{\prime}-\mathrm{C}(9)-\mathrm{H} 2(\mathrm{C} 9)$	101.3 (1.0)
$\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{Hl}(\mathrm{Cl} 10)$	$102 \cdot 8(1.0)$
$\mathrm{C}(3)-\mathrm{C}(10)-\mathrm{H} 2(\mathrm{C} 10)$	$112 \cdot 8(1.0)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Hl}(\mathrm{C} 10)$	109.9 (1.0)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H} 2(\mathrm{C} 10)$	104.7 (1.0)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{Hl}(\mathrm{C} 11)$	$106 \cdot 8(0.9)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H} 2(\mathrm{C} 11)$	109.9 (1.0)
$\mathrm{C}(9){ }^{\prime}-\mathrm{C}(11)-\mathrm{Hl}(\mathrm{C} 11)$	$117 \cdot 7$ (1.0)
$\mathrm{C}(9)^{\prime}-\mathrm{C}(11)-\mathrm{H} 2(\mathrm{C} 11)$	$109 \cdot 8(1 \cdot 0)$

factors are shown in Table 4. The molecule has a center of symmetry and makes use of this symmetry in the space group $P 2_{1} / c$. Bond distances and angles are normal and no significant deviations from accepted values were found. The estimated standard deviations in the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances are $0.003 \AA$ and in the $\mathrm{C}-\mathrm{H}$ bonds are $0.02 \AA$. The bond angles involving the non-hydrogen atoms possess an average standard deviation of $0 \cdot 2^{\circ}$, while those involving hydrogen atoms average 1.0°.

Table 4. Observed and calculated structure factors

In the 14 -membered ring there are two trans substituted double bonds. The $\mathrm{C}=\mathrm{N}$ has a length of $1 \cdot 257 \pm 0.004 \AA$. The $C=N$ bond length in a spectrum of molecules is quite variable and is very sensitive to local environment. Table 6 shows some typical values that have been observed.

Table 6. $\mathrm{C}=\mathrm{N}$ bond distances (\AA) in some oher compounds

		Reference*
1,2-Benzodithiol-3-oxime	$1 \cdot 309 \pm 0.01$	1
N-5-Chlorosalicylidene-aniline	1.27 ± 0.01	2
N -Methyl-2-methylsulphonyl-2phenylsulphonylvinylidineamine	$1 \cdot 154 \pm 0 \cdot 017$	3
N-Ethyl-2,2'-dimethylsulphonylvinylidineamine	$1 \cdot 165 \pm 0.014$	4
Firefly $\mathrm{D}(-)$-luciferin	$\begin{aligned} & 1.27 \pm 0.01 \\ & 1.30 \end{aligned}$	5
2-Keto-3-ethoxybutyraldehydebis(thiosemicarbazone)	$\begin{aligned} & 1.284 \pm 0.006 \\ & 1.285 \pm 0.006 \\ & 1.294 \pm 0.006 \\ & 1.290 \pm 0.006 \end{aligned}$	6
Dimethylglyoxime	$1 \cdot 253 \pm 0.011$	7
Urea nitrate	$\begin{aligned} & 1.297 \pm 0.01 \\ & 1.315 \pm 0.01 \end{aligned}$	8
Tricycloquinazoline	$\begin{aligned} & 1.284 \pm 0.007 \\ & 1.281 \pm 0.007 \\ & 1.271 \pm 0.007 \end{aligned}$	9
anti-2,6-Dimethyl-4-chloro- N methylbenzaldoxime	1.299 ± 0.007	10
Sinigrin	1.29 ± 0.01	11

* (1) Andreetti, Cavalca, Manfredotti \& Musatti (1969). (2) Bergman, Leiserowitz \& Osaki (1964). (3) Bullough \& Wheatley (1957). (4) Daly (1961). (5) Dennis \& Stanford (1973). (6) Gabe, Taylor, Glusker, Minkin \& Patterson (1969). (7) Hamilton (1961). (8) Harkema \& Feil (1969). (9) Iball \& Motherwell (1969). (10) Jensen \& Jerslev (1969). (11) Marsh \& Waser (1970).

Goldman et al. (1970) had predicted the conformation of (II) to be either (III) (trans-trans chair) or (IV) (cis-anti-cis). Our results show that (II) has a

Fig. 1. Thermal ellipsoid plot of the molecule.

Fig. 2. View of the unit cell, a-axis projection.
trans-trans chair conformation. The two $\mathrm{C}=\mathrm{N}$ bonds [$\mathrm{C}(7)-\mathrm{N}^{\prime}$ and $\left.\mathrm{C}(7)^{\prime}-\mathrm{N}\right]$ are parallel to each other. The $\mathrm{C}(7)-\mathrm{N}^{\prime}$ and $\mathrm{C}(7)^{\prime}-\mathrm{N}$ distances are $3.60 \AA$. This shows that the structure can take the conformation shown
in (IV) (cis-anti-cis) if two bonds move toward each other. Fig. 1 shows thermal ellipsoid plot of the molecule and Fig. 2 shows the view of the unit cell, a-axis projection. The intermolecular contacts are all greater than van der Waal's distances.

We wish to acknowledge the partial support of this research from Chas. Pfizer and Co., and a grant of computer time from the University of Arizona Computer Center.

References

Andreetti, G. D., Cavalca, L., Manfredotti, A. \& Musatti, A. (1969). Acta Cryst. B25, 288-293.
Bergman, J., Leiserowitz, L. \& Osaki, K. (1964). J. Chem. Soc. pp. 2068-2085.
Bullough, R. K. \& Wheatley, P. J. (1957). Acta Cryst. 10, 233-237.
Daly, J. J. (1961). J. Chem. Soc. pp. 2801-2810.
Dennis, D. \& Stanford, R. H. Jr (1973). Acta Cryst. B29, 1053-1058.
Gabe, E. J., Taylor, M. R., Glusker, J. P., Minkin, J. A. \& Patterson, A. L. (1969). Acta Cryst. B25, 1620-1631. Goldman, M. I., Larson, J. K., Tretter, J. R. \& Andrews, E. G. (1969). J. Amer. Chem. Soc. 91, 4941-4942. Hamilton, W. C. (1961). Acta Cryst. 14, 95-100.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. B 17, 1040-1044.

Harkema, S. \& Feil, D. (1969). Acta Cryst. B25, 589-591.
Iball, J. \& Motherwell, W. D. S. (1969). Acta Cryst. B25, 882-888.
Jensen, K. G. \& Jerslev, B. (1969). Acta Cryst. B25, 916-925.
Marsh, R. E. \& Waser, J. (1970). Acta Cryst. B26, 10301037.

Acta Cryst. (1974). B30, 2477

The Crystal Structure of Phenmetrazine Hydrochloride

By D. Carlström and I. Hacksell
Department of Medical Physics, Karolinska Institutet, S-104 01 Stockholm 60, Sweden

(Received 3 June 1974; accepted 12 June 1974)
The semi-rigid amphetamine analogue phenmetrazine crystallizes as the hydrochloride in both the orthorhombic and the monoclinic systems. Monoclinic crystals with $a=6 \cdot 11, b=29 \cdot 58, c=7 \cdot 19 \AA$, $\beta=112 \cdot 4^{\circ}$, space group $C c$ and four molecules of $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ON} . \mathrm{HC1}$ in the unit cell were used for the investigation. The structure was determined from 1098 unique and significant counter-recorded reflexions within $\sin \theta / \lambda \leq 0.65$ by the heavy-atom procedure and direct methods independently and was refined to an R index of 0.055 . The conformation of the molecule was found to be almost identical with corresponding parts of amphetamine. The structure contains two strong $\mathrm{NH} \cdots \mathrm{Cl}$ hydrogen bonds with $\mathrm{N} \cdot \cdots$ Cl distances of 3.09 and $3.07 \AA$ which give rise to infinite layers of phenmetrazine and chloride ions. The layers are held together by van der Waals forces.

Introduction

Phenmetrazine (phenmetraline) is a semi-rigid analogue of amphetamine. Having a psychostimulating action like that of amphetamine (although weaker) it
has been widely abused as a stimulating drug. Its main action, however, of decreasing appetite, has earlier made it a commonly used anorexic drug (Anorex, Preludin etc.).

The present study forms part of a research project

